
Chapitre 1

Système thermodynamique

et premier principe

1.3 Fonction d’état : élastique

Un élastique de longueur L est une fonction L (T, f) de sa tempé-
rature T et des forces de norme f exercées sur ses extrémités afin de l’étirer.
L’étirement de l’élastique est caractérisé par deux propriétés physiques :

1) le coefficient de dilatation à force constante αf =
1

L

∂L (T, f)

∂T
,

2) le coefficient de compressibilité à température constante χT =
1

L

∂L (T, f)

∂f
.

On considère que la longueur L (T, f) de l’élastique est une fonction linéaire de
la température T et de la force f dans la limite où ces grandeurs varient peu,
c’est-à-dire ∆T ≪ T et ∆f ≪ f . Dans cette limite, déterminer la variation de
longueur ∆L de l’élastique pour une variation ∆T de la température et une
variation ∆f des forces appliquées.

1.3 Solution

La différentielle (1.8) de la longueur de l’élastique s’écrit,

dL (T, f) =
∂L (T, f)

∂T
dT +

∂L (T, f)

∂f
df

Dans la limite où la température T et la force f varient peu, la longueur L (T, f)
de l’élastique est une fonction linéaire de la température T et de la force f .
Cela signifie que les dérivées partielles de la longueur L (T, f) par rapport à
la température T et à la force f sont constantes. Ainsi, l’intégration de la
différentielle de la longueur dL (T, f) de l’élastique d’une longueur L à une
longueur L+∆L s’écrit formellement,∫ L+∆L

L

dL′ =
∂L (T, f)

∂T

∫ T+∆T

T

dT ′ +
∂L (T, f)

∂f

∫ f+∆f

f

df ′
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Ainsi, la variation de longueur de l’élastique a pour expression,

∆L =
∂L (T, f)

∂T
∆T +

∂L (T, f)

∂f
∆f

et peut être mise sous la forme,

∆L = L

(
1

L

∂L (T, f)

∂T

)
∆T + L

(
1

L

∂L (T, f)

∂f

)
∆f

En utilisant les deux propriétés physiques de l’élastique, on obtient l’expression
suivante pour la variation de longueur de l’élastique,

∆L = αf L∆T + χT L∆f

1.4 Fonction d’état : volume

Un récipient de forme conique avec un angle d’ouverture α autour
de l’axe vertical est rempli de liquide incompressible (fig. 1.1). Le liquide entre
dans le cône à vitesse constante v en passant par un tube circulaire de diamètre
d attaché à la base du cône. Lorsque la surface circulaire du liquide a un rayon
R (h (t)) et se trouve à hauteur h (t) dans le cône, le volume de liquide dans le
cône est,

V (t) =
1

3
π R2 (h (t))h (t)

où on a fait l’approximation que d ≪ R (h (t)). Initialement, il n’y a pas de
liquide dans le cône, c’est-à-dire h (0) = 0.

v

d

a

d

R (h (t))

h (t)

Fig. 1.1 Un liquide pénètre dans un entonnoir à vitesse constante v en passant par un tube
de diamètre d. L’entonnoir est un cône d’angle d’ouverture α. L’axe du cône est vertical.

Déterminer la dérivée temporelle du volume de liquide V̇ (t) dans le récipient
et en déduire la hauteur h (t).
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1.4 Solution

Le rayon de la surface circulaire du liquide dans le cône s’écrit,

R (h (t)) = tanαh (t)

où l’angle α est constant. Ainsi, le volume du cône s’écrit,

V (t) =
1

3
π R2 (h (t))h (t) =

1

3
π tan2 αh3 (t)

et sa dérivée temporelle est,

V̇ (t) = π tan2 αh2 (t) ḣ (t)

D’autre part, étant donné que le liquide est incompressible, la dérivée tempo-
relle du volume de liquide est le débit entrant,

V̇ (t) =
dV (t)

dt
= A

dr (t)

dt

où A est l’aire de la section du tube, d est le diamètre du tube et dr est le
déplacement infinitésimal du liquide durant l’intervalle de temps infinitésimal
dt. Compte tenu de la vitesse v constante, la dérivée temporelle du volume
devient,

V̇ = A
dr

dt
= π

(
d

2

)2

v = π
v d2

4
= cste

En identifiant ces deux expressions de la dérivée temporelle du volume, on
obtient l’équation,

tan2 αh2 (t) ḣ (t) =
v d2

4

qui peut mise sous la forme suivante,

h2 (t) dh (t) =
v d2

4 tan2 α
dt

L’intégrale de cette équation par rapport au temps s’écrit,∫ h(t)

0

h′2 (t′) dh′ (t′) =
v t d2

4 tan2 α

∫ t

0

dt′

Le résultat de cette intégrale est,

1

3
h3 (t) =

v t d2

4 tan2 α

Ainsi, la hauteur de liquide dans le cône est,

h (t) =
3

√
3 v t d2

4 tan2 α
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1.8 Concentration de sel dans une baignoire

Une baignoire contient Ns (t) moles de sel dissoutes dans Ne (t) moles
d’eau. Un courant d’eau douce constant I in

e > 0 entre dans la baignoire. On
suppose que l’eau est complètement brassée dans la baignoire de sorte que
la concentration de sel peut être considérée comme homogène. Un courant
d’eau salée constant I out

es = I out
s (t) + I out

e (t) sort de la baignoire qui fuit, où
I out
s (t) < 0 et I out

e (t) < 0 sont les courants sortants de sel et d’eau. Déterminer
la concentration de sel,

cs (t) =
Ns (t)

Ns (t) +Ne (t)

comme fonction du temps t compte tenu des conditions initialesNs (0) etNe (0).

Fig. 1.2 Un courant d’eau constant I in
e > 0 entre dans la baignoire et un courant d’eau salée

constant en sort I out
es < 0 en raison d’une fuite. La concentration de sel dans la baignoire est

cs (t).

1.8 Solution

Premièrement, on écrit les équations de bilan pour le sel et l’eau dans la bai-
gnoire. La dérivée temporelle du nombre de moles de sel dans la baignoire est
égale au courant sortant de sel et la dérivée temporelle du nombre de moles
d’eau est la somme des courants entrant et sortant d’eau douce,

Ṅs (t) = I out
s (t)

Ṅe (t) = I in
e + I out

e (t)

où I in
e > 0 est le courant entrant d’eau douce, et Iouts < 0 et Ioute < 0 sont les

courants sortants de sel et d’eau. Comme un courant est une grandeur extensive,
le courant sortant d’eau salée Ioutes est la somme des courants sortants de sel
Iouts (t) et d’eau Ioute (t),

Ioutes = Iouts (t) + Ioute (t)



Concentration de sel dans une baignoire 5

Deuxièmement, on suppose que l’eau et le sel sont complètement mélangés dans
la baignoire de sorte que la concentration de sel peut être considérée comme
homogène. Ainsi, le courant sortant de sel Iouts (t) est égal au produit de sa
concentration molaire cs (t) dans la baignoire et du courant sortant d’eau salée
Ioutes ,

Iouts (t) = cs (t) I
out
es

En substituant cette équation pour le courant Iouts (t) dans l’équation de bilan
pour le sel dans la baignoire, en utilisant la définition de la concentration
molaire,

cs (t) =
Ns (t)

Ns (t) +Ne (t)

et en divisant le résultat par Ns (t), on obtient,

Ṅs (t)

Ns (t)
=

Ioutes

Ns (t) +Ne (t)

En sommant les deux premières équations de bilan, on obtient l’équation de
bilan pour l’eau salée dans la baignoire,

Ṅs (t) + Ṅe (t) = I ine + Ioutes

Comme le terme dans le membre de droite de cette équation est constant, elle
peut être intégrée par rapport au temps de t = 0 à t,∫ Ns(t)

Ns(0)

dN ′
s (t

′) +

∫ Ne(t)

Ne(0)

dN ′
e (t

′) =
(
I ine + Ioutes

) ∫ t

0

dt′

ce qui donne,

Ns (t) +Ne (t) = Ns (0) +Ne (0) +
(
I ine + Ioutes

)
t

En substituant ce résultat dans l’équation pour Ṅs (t) /Ns (t), on obtient,

Ṅs (t)

Ns (t)
=

Ioutes

Ns (0) +Ne (0) + (I ine + Ioutes ) t

Cette équation peut être intégrée par rapport au temps de t = 0 à t,∫ Ns(t)

Ns(0)

dN ′
s (t

′)

N ′
s (t

′)
=

Ioutes

I ine + Ioutes

∫ t

0

(
I ine + Ioutes

)
dt′

Ns (0) +Ne (0) + (I ine + Ioutes ) t′

ce qui donne,

ln

(
Ns (t)

Ns (0)

)
=

Ioutes

I ine + Ioutes

ln

(
Ns (0) +Ne (0) +

(
I ine + Ioutes

)
t

Ns (0) +Ne (0)

)
En prenant l’exponentielle de ce résultat, on obtient,

Ns (t) = Ns (0)

(
1 +

(
I ine + Ioutes

)
t

Ns (0) +Ne (0)

) Ioutes

I ine + Ioutes
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En substituant les relations pour Ns (t) et Ns (t) + Ne (t) dans l’expression
concentration molaire de sel cs (t), on obtient,

cs (t) =
Ns (0)

Ns (0) +Ne (0) + (I ine + Ioutes ) t

(
1 +

(
I ine + Ioutes

)
t

Ns (0) +Ne (0)

) Ioutes

I ine + Ioutes

Ce résultat peut être mis sous la forme suivante (fig. 1.3),

cs (t) =
Ns (0)

Ns (0) +Ne (0)

(
1 +

(
I ine + Ioutes

)
t

Ns (0) +Ne (0)

) Ioutes

I ine + Ioutes

− 1

=
Ns (0)

Ns (0) +Ne (0)

(
1 +

(
I in
e + I out

es

)
t

Ns (0) +Ne (0)

)−
I ine

I ine + Ioutes

=
Ns (0)

Ns (0) +Ne (0)

(
1 +

(
I in
e + I out

es

)
t

Ns (0) +Ne (0)

)−
1

1 + I out
es /I in

e

1.9 Capillarité : angle de contact

Pour tenir compte des effets de capillarité, on considère que l’énergie
interne d’un système contient des contributions qui sont proportionnelles aux
aires des interfaces entre les différentes parties du système. Pour une goutte de
liquide mouillant une surface horizontale (fig. 1.4), on suppose que le liquide
a une forme de calotte sphérique. Alors, l’énergie interne est exprimée comme
U (h,R) = (γsℓ − γsg)πa

2 + γℓg A où a = R sin θ =
√
2Rh− h2 est le rayon

et A = 2πRh est l’aire latérale de la calotte sphérique de liquide de hauteur

Fig. 1.3 La concentration de sel cs (t) dans l’eau salée de la baignoire est une fonction
décroissante du temps qui tend asymptotiquement vers 0.
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h obtenue en tronquant la sphère de rayon R avec la surface horizontale du
substrat solide. Les paramètres γsℓ, γsg, γℓg caractérisent les substances et sont
indépendants de la forme de la goutte. Montrer que l’angle de contact θ est
donné par,

(γsℓ − γsg) + γℓg cos θ = 0

en minimisant l’énergie interne U (h,R) compte tenu de la condition que le
volume V (h,R) = π

3 h2 (3R− h) = V0 de la calotte sphérique de liquide est
constant.

R

q

q
gsg

g g

gs

h

Fig. 1.4 Une goutte de liquide sur un substrat horizontal a une forme de calotte sphérique.
L’angle θ est appelé angle de contact. Une tension superficielle est définie pour les trois
interfaces : solide-liquide (γsℓ), solide-gaz (γsg) et liquide-gaz (γℓg).

1.9 Solution

Afin de minimiser l’énergie interne U (h,R), on utilise la méthode des multi-
plicateurs de Lagrange pour imposer la contrainte du volume fixé de la goutte,
c’est-à-dire V (h,R) = V0. La fonction de Lagrange L (h,R, λ) à minimiser est,

L (h,R, λ) = U (h,R)− λ
(
V (h,R)− V0

)
= (γsℓ − γsg)π

(
2Rh− h2

)
+ γℓg 2πRh

− λ
(π
3
h2 (3R− h)− V0

)
où λ est le multiplicateur de Lagrange et la fonction de Lagrange L (h,R, λ)
représente la même grandeur que l’énergie interne U (h,R) compte tenu de la
contrainte. D’après cette méthode, la dérivée partielle de la fonction L (h,R, λ)
par rapport à h doit s’annuler,

∂L

∂h
= (γsℓ − γsg) 2π (R− h) + γℓg 2πR− λπ

(
2Rh− h2

)
= 0

ce qui donne une expression pour le multiplicateur de Lagrange,

λ =

(
2

2Rh− h2

)
(R− h) (γsℓ − γsg) +

(
2

2Rh− h2

)
Rγℓg



8 Système thermodynamique et premier principe

La dérivée partielle de la fonction L (h,R, λ) par rapport à R doit s’annuler
également,

∂L

∂R
= (γsℓ − γsg) 2πh+ γℓg 2πh− λπh2 = 0

ce qui donne une autre expression pour le multiplicateur de Lagrange,

λ =
2

h
(γsℓ − γsg) +

2

h
γℓg

En identifiant les deux expressions pour le multiplicateur de Lagrange λ, on
obtient,

(R− h) (γsℓ − γsg) +Rγℓg = (2R− h) (γsℓ − γsg) + (2R− h) γℓg

qui peut être mis sous la forme suivante,

(γsℓ − γsg) +

(
R− h

R

)
γℓg = 0

Par inspection graphique (fig. 1.4),

cos θ =
R− h

R

Ainsi, on obtient la condition suivante,

(γsℓ − γsg) + γℓg cos θ = 0

1.10 Énergie : thermodynamique et mécanique

Un poids de masse M est suspendu à un fil. La tension T dans le fil
est telle que le poids descend verticalement avec une vitesse v qui peut varier
au cours du temps.

1) Déterminer la dérivée temporelle de l’énergie mécanique Emec qui est la
somme des énergies cinétique et potentielle.

2) Déterminer la dérivée temporelle de l’énergie E du système d’après le pre-
mier principe de la thermodynamique (1.18).

1.10 Solution

1) Du point de vue de la mécanique, la projection de l’équation du mouvement
de Newton pour le poids, T +M g = M a, le long de l’axe de coordonnée
Oz orienté vers le bas s’écrit,

−T +M g = Mz̈
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L’évolution temporelle de l’énergie mécanique Emec est obtenue en multi-
pliant ce résultat par ż,

d

dt

(
1

2
Mż2 − Mgz

)
= −T ż

Comme l’énergie mécanique Emec est la somme de l’énergie cinétique et de
l’énergie potentielle,

Emec =
1

2
Mż2 − Mgz

le résultat précédent peut être mis sous la forme suivante,

Ėmec = −T ż

2) Du point de vue de la thermodynamique, l’énergie E du système est expri-
mée comme,

E =
1

2
Mż2 + U

où U est l’énergie interne du système. Comme le système est constitué de
la masse M seulement, son poids est une force extérieure. Ainsi, l’énergie
potentielle gravitationnelle n’est pas inclue dans l’énergie E du système.
Vu que l’énergie interne U est une fonction des variables d’état du système
uniquement, elle est indépendante de la hauteur z dans le champ gravita-
tionnel terrestre. Comme il n’y a pas de transfert de chaleur entre le poids
et l’environnement, le courant de chaleur s’annule, c’est-à-dire IQ = 0. De
plus, on suppose que le poids est indéformable, ce qui implique que la puis-
sance mécanique de déformation s’annule également, c’est-à-dire PW = 0.
La puissance extérieure est due au poids M g et à la tension T qui peut
modifier l’énergie cinétique du système,

P ext = T · v +M g · v = −T ż +Mgż

Le premier principe Ė = P ext implique,

Ė = (−T +Mg) ż

Vu que l’énergie interne de ce système est constante, c’est-à-dire U̇ = 0, le
résultat précédent se réduit à,

d

dt

(
1

2
Mż2

)
= (−T +Mg) ż

Les équations d’évolution exprimées en termes des dérivées temporelles de
l’énergie mécanique Emec et de l’énergie E sont mathématiquement les
mêmes. En revanche, la définition des systèmes mécanique et thermody-
namique est implicitement différente. Pour le système mécanique, l’énergie
mécanique Emec contient l’énergie potentielle gravitationnelle d’interaction
Mgz entre le poids et la terre. Cela implique que le système mécanique est
de facto constitué du poids de masse M et de la terre puisque l’énergie
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potentielle est interne au système. En revanche, pour le système thermody-
namique, l’énergie E se réduit à l’énergie cinétique du poids de masse M , ce
qui implique ce système thermodynamique contient uniquement le poids.
Ainsi, la puissance extérieure P ext du système thermodynamique contient
un terme de puissance Mgż dû au poids au poids Mg considéré comme une
force extérieure, contrairement au cas du système mécanique pour lequel le
poids est une force intérieure.

1.11 Oscillateur harmonique amorti

Un système isolé constitué d’un point matériel de masse M attaché
à un ressort de constante élastique k est immergé dans un fluide visqueux
homogène et immobile. Le point matériel est soumis à une force de frottement
visqueux en régime laminaire F f (t) = −λv (t) où v (t) est la vitesse du point
matériel et où λ > 0. Le frottement visqueux interne entre le point matériel
et le fluide est caractérisé par une variable d’état extensive scalaire S (t). La
fonction d’état intensive conjuguée à la variable S (t) est,

T (t) =
dU (S (t))

dS (t)

Le facteur d’amortissement γ et la pulsation ω0 des oscillations non amorties
sont définis comme,

γ =
λ

2M
et ω0 =

√
k

M

Le mouvement rectiligne du point matériel a lieu le long de l’axe Ox. La position
d’équilibre du ressort cöıncide avec l’origine O. Ainsi, en régime d’amortisse-
ment faible où γ ≪ ω0, la coordonnée de position x (t) s’écrit,

x (t) = Ae− γt cos (ω0t+ ϕ)

où A est l’amplitude maximale du mouvement oscillatoire et où ϕ est un angle
de déphasage. En régime d’amortissement faible,

1) déterminer l’équation du mouvement harmonique amorti le long de l’axe
Ox ;

2) déterminer l’énergie E (S (t) , t) du système ;

3) déterminer la dérivée temporelle de la variable d’état extensive Ṡ (t).

1.11 Solution

1) Étant donné que la position d’équilibre cöıncide avec l’origine, la déforma-
tion cöıncide avec le déplacement. Ainsi, la force élastique exercée par le
ressort de constante élastique k s’écrit,

F e (t) = − k r (t) = − k x (t) x̂
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La force de frottement visqueux s’écrit,

F f (t) = −λv (t) = −λ ẋ (t) x̂

La force élastique F e (t) et la force de frottement visqueux F f (t) sont des
forces intérieures au système mais extérieures au sous-système formé du
point matériel. Ainsi, le théorème du centre de masse appliqué au sous-
système formé du point matériel s’écrit,

Ṗ (t) = F e (t) + F f (t)

Compte tenu de la masse constante du point matériel,

Ṗ (t) = M v̇ (t) = M ẍ (t) x̂

l’équation vectorielle du mouvement devient,

M v̇ (t) = − k r (t)− λv (t)

La projection de cette équation le long de l’axe du mouvement Ox s’écrit,

M ẍ (t) = − k x (t)− λ ẋ (t)

et elle est remise en forme comme,

ẍ (t) + 2 γ ẋ (t) + ω2
0 x (t) = 0

2) Les variables d’état du système sont la position r (t) et la quantité de mou-
vement P (t) du point matériel et la variable d’état extensive S (t) caracté-
risant le frottement dans le fluide homogène. La fonction d’état énergie du
système est la somme de l’énergie cinétique du point matériel et de l’énergie
interne,

E (r (t) ,P (t)S (t)) =
P 2 (t)

2M
+ U (r (t) , S (t))

L’énergie cinétique s’écrit explicitement comme,

P 2 (t)

2M
=

1

2
M v2 (t) =

1

2
M ẋ2 (t)

L’énergie interne est la somme de l’énergie potentielle élastique et d’une
partie caractérisant le frottement,

U (r (t) , S (t)) =
1

2
k r2 (t) + U (S (t)) =

1

2
k x2 (t) + U (S (t))

Ainsi, l’énergie devient,

E (x (t) , ẋ (t) , S (t)) =
1

2
M ẋ2 (t) +

1

2
k x2 (t) + U (S (t))

La solution du mouvement oscillatoire en régime d’amortissement faible
s’écrit,

x (t) = Ae− γ t cos (ω0t+ ϕ)



12 Système thermodynamique et premier principe

et sa dérivée temporelle est,

ẋ (t) = −Ae− γ t
(
ω0 sin (ω0t+ ϕ) + γ cos (ω0t+ ϕ)

)
En régime d’amortissement faible, c’est-à-dire γ ≪ ω0, on en déduit que,

x2 (t) = A2e− 2 γ t cos2 (ω0t+ ϕ)

ẋ2 (t) = ω2
0 A

2e− 2 γ t sin2 (ω0t+ ϕ) =
k

M
A2e− 2γ t sin2 (ω0t+ ϕ)

Ainsi, l’énergie du système devient,

E (S (t) , t) =
1

2
k A2e− 2γt

(
sin2 (ω0t+ ϕ) + cos2 (ω0t+ ϕ)

)
+ U (S (t))

et se réduit à,

E (S (t) , t) =
1

2
k A2e− 2 γ t + U (S (t))

3) Étant donné que le système est isolé, la dérivée temporelle de l’énergie est
nulle,

Ė (S (t) , t) = − γ k A2e− 2γt +
dU (S (t))

dS (t)
Ṡ (t) = 0

Compte tenu de la fonction d’état T (t) conjuguée à la variable d’état S (t),

T (t) =
dU (S (t))

dS (t)

on en conclut que la dérivée temporelle Ṡ (t) est strictement croissante,

Ṡ (t) = γ k A2 e− 2γt

T (t)
> 0


