CHAPITRE 1

Systeme thermodynamique

et premier principe

1.3 Fonction d’état : élastique

Yook Un élastique de longueur L est une fonction L (T, f) de sa tempé-
rature T et des forces de norme f exercées sur ses extrémités afin de 1’étirer.
L’étirement de 1’élastique est caractérisé par deux propriétés physiques :

1 0L (T,
1) le coeflicient de dilatation & force constante ay = Zich f),
1 0L (T,
2) le coeflicient de compressibilité & température constante xyr = Léff)'
On considére que la longueur L (T, f) de lélastique est une fonction linéaire de
la température T' et de la force f dans la limite ou ces grandeurs varient peu,
c’est-a-dire AT < T et Af < f. Dans cette limite, déterminer la variation de
longueur AL de I’élastique pour une variation AT de la température et une
variation Af des forces appliquées.

Solution

La différentielle (1.8) de la longueur de I’élastique s’écrit,

OL(T, f) OL(T, f)
a7 T + af

dL (T, f) = df

Dans la limite ot la température T et la force f varient peu, la longueur L (T, f)
de 'élastique est une fonction linéaire de la température T et de la force f.
Cela signifie que les dérivées partielles de la longueur L (T, f) par rapport &
la température T et a la force f sont constantes. Ainsi, intégration de la
différentielle de la longueur dL (T, f) de 1'élastique d’une longueur L & une
longueur L + AL s’écrit formellement,

L+AL T+AT f+Af
L or  Jr of !
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Ainsi, la variation de longueur de I’élastique a pour expression,

_OL(Tf) g, OL(T)

AL T of

Af

et peut étre mise sous la forme,

B 1 oL(T, f) 1 0L(T, f)

En utilisant les deux propriétés physiques de 1’élastique, on obtient I’expression
suivante pour la variation de longueur de 1’élastique,

AL:afLAT+XTLAf

1.4 Fonction d’état : volume

Yo% Un récipient de forme conique avec un angle d’ouverture o autour
de I’axe vertical est rempli de liquide incompressible (fig. 1.1). Le liquide entre
dans le cone a vitesse constante v en passant par un tube circulaire de diametre
d attaché a la base du cone. Lorsque la surface circulaire du liquide a un rayon
R(h(t)) et se trouve & hauteur h (¢) dans le cone, le volume de liquide dans le
cone est,

V() = %m? (h(£)) h (t)

ou on a fait 'approximation que d < R (h(t)). Initialement, il n’y a pas de
liquide dans le cone, c’est-a-dire h (0) = 0.

Fig. 1.1 Un liquide pénétre dans un entonnoir & vitesse constante v en passant par un tube
de diametre d. L’entonnoir est un cone d’angle d’ouverture a. L’axe du cone est vertical.

Déterminer la dérivée temporelle du volume de liquide V (t) dans le récipient
et en déduire la hauteur h ().
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Solution

Le rayon de la surface circulaire du liquide dans le cone s’écrit,
R(h(t)) =tanah(t)

ou l'angle « est constant. Ainsi, le volume du cone s’écrit,

V(t) = %w}# (h(t)h(t) = %Wtan2ah3 (t)

et sa dérivée temporelle est,
V (t) =7 tan® a k% (t) h(t)

D’autre part, étant donné que le liquide est incompressible, la dérivée tempo-
relle du volume de liquide est le débit entrant,

_ AV, dr()

== dt

ou A est l'aire de la section du tube, d est le diamétre du tube et dr est le
déplacement infinitésimal du liquide durant l'intervalle de temps infinitésimal
dt. Compte tenu de la vitesse v constante, la dérivée temporelle du volume

devient,
: dr d\? vd?
VAdtﬂ(2) V=T = cste

En identifiant ces deux expressions de la dérivée temporelle du volume, on
obtient ’équation,

. d?
tan® a h? (t) h(t) = UT
qui peut mise sous la forme suivante,
vd?
h*(t) dh(t) = ———5—
®) ®) 4 tan® o

L’intégrale de cette équation par rapport au temps s’écrit,
h(t) vt d? t
/ W2 () dn (1) = 2t / d’
0 4 tan“ v Jy
Le résultat de cette intégrale est,

1 td?
Sh ()=

- 4 tan? o

Ainsi, la hauteur de liquide dans le cone est,

3/ 3vtd?
h(t) =4 ———
() 4tan? «
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1.8 Concentration de sel dans une baignoire

Yook Une baignoire contient Ny (¢) moles de sel dissoutes dans N, (t) moles
d’eau. Un courant d’eau douce constant I® > 0 entre dans la baignoire. On
suppose que l’eau est completement brassée dans la baignoire de sorte que
la concentration de sel peut étre considérée comme homogene. Un courant
d’eau salée constant % = 129 (¢) 4+ I°9 (¢) sort de la baignoire qui fuit, olt
I (t) < 0et 12" (t) < 0 sont les courants sortants de sel et d’eau. Déterminer
la concentration de sel,

N, (t)
cs (t) = N, (t) + N, (¢)

comme fonction du temps ¢ compte tenu des conditions initiales N (0) et N, (0).

I >0 B

@ (%)

I <0

Fig. 1.2 Un courant d’eau constant 1™ > 0 entre dans la baignoire et un courant d’eau salée
constant en sort IS < 0 en raison d’une fuite. La concentration de sel dans la baignoire est
cs (t).

Solution

Premierement, on écrit les équations de bilan pour le sel et I’eau dans la bai-
gnoire. La dérivée temporelle du nombre de moles de sel dans la baignoire est
égale au courant sortant de sel et la dérivée temporelle du nombre de moles
d’eau est la somme des courants entrant et sortant d’eau douce,

N () = 19" (1)

Ne (1) = 1"+ 12" (1)
ott I)" > 0 est le courant entrant d’eau douce, et IS < 0 et 12" < 0 sont les
courants sortants de sel et d’eau. Comme un courant est une grandeur extensive,

le courant sortant d’eau salée IS™" est la somme des courants sortants de sel
IoUt (t) et d’eau ISU* (),

I = 12 (1) + 12 (1
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Deuxiemement, on suppose que l’eau et le sel sont complétement mélangés dans
la baignoire de sorte que la concentration de sel peut étre considérée comme
homogene. Ainsi, le courant sortant de sel I%% (¢) est égal au produit de sa

concentration molaire ¢, (t) dans la baignoire et du courant sortant d’eau salée
Jout

es
I (t) = e (t) I
En substituant cette équation pour le courant I% (¢) dans I’équation de bilan
pour le sel dans la baignoire, en utilisant la définition de la concentration
molaire,
N; (t
cs(t) = —nt— ®)
N, () + N. (1)

et en divisant le résultat par N (¢), on obtient,

N, (t) I

Ny (t)  Ng(t)+ Ne(t)

En sommant les deux premieres équations de bilan, on obtient ’équation de
bilan pour l’eau salée dans la baignoire,

Ns (t) +Ne (t) = Ién +I§;t

Comme le terme dans le membre de droite de cette équation est constant, elle
peut étre intégrée par rapport au temps de t =0 a ¢,

N (#) Ne(t)
[ aney+ [ vz = (1 1 / at
N (0) Ne(0)

ce qui donne,
N (t) 4 Ne (t) = Nq (0) + Ne (0) + (I 4+ I28) ¢
En substituant ce résultat dans Péquation pour Ny (t) /N, (t), on obtient,

N; (t) I

Ng(t) — N (0)+ Ne (0) + (Jin 4 Iout) ¢

Cette équation peut étre intégrée par rapport au temps de t =0 a t,

/Ns(t) dNS/ (t/) B Ig;t / Iln + Iout) dt’
N M) LIt Jo No(0)+ N (0) + (I + Iyt ¢

ce qui donne,

L(Ne® e (NG(0) + N (0) + (I + I ¢
Ng(0))  Iin+ 19w N, (0) + N (0)

En prenant I'’exponentielle de ce résultat, on obtient,
Iout
(1 + 1) ) T+ I
0)

N () = N, (0) (1 TN O F N
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En substituant les relations pour Ny (t) et N (t) + N (t) dans 'expression
concentration molaire de sel ¢ (¢), on obtient,

out
Ies

Ns 0 Iin+Iout t Ién_|__[60;1t
o0 (8) = (0) ( (L + 123) )

N; (0) + Ne (0) + (Il + Iont) t N (0) + N, (0)
Ce résultat peut étre mis sous la forme suivante (fig. 1.3),
Iout
Iin Jout t m -

()= — @ (), UerIet ) Ik T
N +NO TN 0N

Iin

N, (0) O o) A W

(0) N; (0) + Ne (0)

1

_ N, I e L
= DR AOERAO

1.9 Capillarité : angle de contact

WYk Pour tenir compte des effets de capillarité, on considére que 1’énergie
interne d’un systeme contient des contributions qui sont proportionnelles aux
aires des interfaces entre les différentes parties du systéme. Pour une goutte de
liquide mouillant une surface horizontale (fig. 1.4), on suppose que le liquide
a une forme de calotte sphérique. Alors, I’énergie interne est exprimée comme
U (h,R) = (Vse — Vsg) Ta® + Yog A ol @ = Rsinf = v2Rh — h? est le rayon
et A = 2w Rh est Daire latérale de la calotte sphérique de liquide de hauteur

cs (t)
1

0 > 1

Fig. 1.3 La concentration de sel cs (t) dans l’eau salée de la baignoire est une fonction
décroissante du temps qui tend asymptotiquement vers 0.
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h obtenue en tronquant la sphére de rayon R avec la surface horizontale du
substrat solide. Les parametres vq¢, Vsg, Veg caractérisent les substances et sont
indépendants de la forme de la goutte. Montrer que ’angle de contact 6 est
donné par,

(Vst = Vsg) + Yegcos =0

en minimisant ’énergie interne U (h, R) compte tenu de la condition que le
volume V (h,R) = £ h?(3R— h) =V de la calotte sphérique de liquide est
constant.

’)/( q

Fig. 1.4 Une goutte de liquide sur un substrat horizontal a une forme de calotte sphérique.
L’angle 6 est appelé angle de contact. Une tension superficielle est définie pour les trois
interfaces : solide-liquide (ys¢), solide-gaz (7ysg) et liquide-gaz (vyeq).

Solution

Afin de minimiser 'énergie interne U (h, R), on utilise la méthode des multi-
plicateurs de Lagrange pour imposer la contrainte du volume fixé de la goutte,
c’est-a-dire V' (h, R) = Vj. La fonction de Lagrange L (h, R, A) & minimiser est,
L(h,RA) =U (h,R) - )\(V(h,R) - Vo)
= (Yot — Vsg) ™ (2Rh — h?) + 49 2w RA
- A(ghz(?,R— h) — VO>
ol A est le multiplicateur de Lagrange et la fonction de Lagrange L (h, R, \)
représente la méme grandeur que I’énergie interne U (h, R) compte tenu de la

contrainte. D’apres cette méthode, la dérivée partielle de la fonction L (h, R, \)
par rapport a h doit s’annuler,

oL
5 (Vse — Vsg) 2T (R — h) + e 2nR — A (2Rh — h?) =0

ce qui donne une expression pour le multiplicateur de Lagrange,

2 2
A= <2Rh—h2> (R—h) (vse — Vsg) + <2Rh—h2) Ry
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La dérivée partielle de la fonction L (h, R,\) par rapport & R doit s’annuler

également,

oL
3E = (Vse — Vsg) 2Th + Yeg 2Th — AMth? =0

ce qui donne une autre expression pour le multiplicateur de Lagrange,

2

2
A= E (78@ *"Ysg) + E’Yﬂg

En identifiant les deux expressions pour le multiplicateur de Lagrange A, on
obtient,

(R—=h) (vse — 739) + Ryeg = (2R — h) (yse — 'Ysg) + (2R — h) Veg

qui peut étre mis sous la forme suivante,

R—h
(’ysl - 739) + (R) Yeg = 0

Par inspection graphique (fig. 1.4),

cosf = R;h

R

Ainsi, on obtient la condition suivante,

(Vse = Ysg) + Veg cosO =0

1.10 Energie : thermodynamique et mécanique

Yvok¥  Un poids de masse M est suspendu & un fil. La tension T' dans le fil
est telle que le poids descend verticalement avec une vitesse v qui peut varier
au cours du temps.

1) Déterminer la dérivée temporelle de ’énergie mécanique FE . qui est la
somme des énergies cinétique et potentielle.

2) Déterminer la dérivée temporelle de I’énergie E du systéme d’apres le pre-
mier principe de la thermodynamique (1.18).

Solution

1) Du point de vue de la mécanique, la projection de I’équation du mouvement
de Newton pour le poids, T'+ M g = M a, le long de ’'axe de coordonnée
Oz orienté vers le bas s’écrit,

- T+ Mg=M:2
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L’évolution temporelle de ’énergie mécanique FE .. est obtenue en multi-
pliant ce résultat par 2,

d (1 _ .4 .
T (2Mz — Mgz) =-Tz

Comme ’énergie mécanique F . est la somme de ’énergie cinétique et de
I’énergie potentielle,

1
F e = §M22 — Mgz
le résultat précédent peut étre mis sous la forme suivante,
Emec =-Tz

Du point de vue de la thermodynamique, I’énergie E' du systéme est expri-
mée comme,

1
E=§Mf+U

ou U est énergie interne du systeme. Comme le systéme est constitué de
la masse M seulement, son poids est une force extérieure. Ainsi, I'énergie
potentielle gravitationnelle n’est pas inclue dans ’énergie E du systeme.
Vu que ’énergie interne U est une fonction des variables d’état du systeme
uniquement, elle est indépendante de la hauteur z dans le champ gravita-
tionnel terrestre. Comme il n’y a pas de transfert de chaleur entre le poids
et I'environnement, le courant de chaleur s’annule, c’est-a-dire I = 0. De
plus, on suppose que le poids est indéformable, ce qui implique que la puis-
sance mécanique de déformation s’annule également, c’est-a-dire Py = 0.
La puissance extérieure est due au poids M g et a la tension T qui peut
modifier ’énergie cinétique du systeme,

P =T.v+Mg v=—-T:i+ Mgz

Le premier principe £ = P ' implique,

E=(-T+Myg):z

Vu que l'énergie interne de ce systeme est constante, c’est-a-dire U=0,le
résultat précédent se réduit a,

% (;Mz‘Q) =(-T+Mg):z
Les équations d’évolution exprimées en termes des dérivées temporelles de
I’énergie mécanique FE .. et de I’énergie E' sont mathématiquement les
mémes. En revanche, la définition des systémes mécanique et thermody-
namique est implicitement différente. Pour le systeme mécanique, 1’énergie
mécanique F . contient I’énergie potentielle gravitationnelle d’interaction
Mgz entre le poids et la terre. Cela implique que le systéeme mécanique est
de facto constitué du poids de masse M et de la terre puisque 'énergie
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potentielle est interne au systeme. En revanche, pour le systéeme thermody-
namique, I’énergie E se réduit a ’énergie cinétique du poids de masse M, ce
qui implique ce systeme thermodynamique contient uniquement le poids.
Ainsi, la puissance extérieure P du systéme thermodynamique contient
un terme de puissance Mgz du au poids au poids M g considéré comme une
force extérieure, contrairement au cas du systéme mécanique pour lequel le
poids est une force intérieure.

1.11 Oscillateur harmonique amorti

Yroek  Un systeme isolé constitué d’un point matériel de masse M attaché
a un ressort de constante élastique k est immergé dans un fluide visqueux
homogene et immobile. Le point matériel est soumis a une force de frottement
visqueux en régime laminaire Fy (t) = — A v (t) ol v (¢) est la vitesse du point
matériel et o A > 0. Le frottement visqueux interne entre le point matériel
et le fluide est caractérisé par une variable d’état extensive scalaire S (). La
fonction d’état intensive conjuguée a la variable S (t) est,

_AU(s()
T =350

Le facteur d’amortissement ~ et la pulsation wg des oscillations non amorties
sont définis comme,

A k

:m et wo = —

v M

Le mouvement rectiligne du point matériel a lieu le long de I’axe Ox. La position
d’équilibre du ressort coincide avec l'origine O. Ainsi, en régime d’amortisse-
ment faible oul v < wyp, la coordonnée de position x (t) s’écrit,

x(t) = Ae” " cos (wot + @)
ot A est Pamplitude maximale du mouvement oscillatoire et ot ¢ est un angle
de déphasage. En régime d’amortissement faible,

1) déterminer ’équation du mouvement harmonique amorti le long de 1'axe
Ozx;

2) déterminer Iénergie E (S (t),t) du systeme;

3) déterminer la dérivée temporelle de la variable d’état extensive S ().

Solution

1) Etant donné que la position d’équilibre coincide avec 'origine, la déforma-
tion coincide avec le déplacement. Ainsi, la force élastique exercée par le
ressort de constante élastique k s’écrit,

F.(t)=—kr(t)=—ka(t)a
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La force de frottement visqueux s’écrit,
Fi(t)=—Xv(t)=—-Ai(t)&

La force élastique F'. (t) et la force de frottement visqueux F'y (t) sont des
forces intérieures au systéme mais extérieures au sous-systeme formé du
point matériel. Ainsi, le théoréeme du centre de masse appliqué au sous-
systeme formé du point matériel s’écrit,

P(t)=F.(t)+ Fy(t)
Compte tenu de la masse constante du point matériel,
Pt)=Mv(t)=M3i(t)&
I’équation vectorielle du mouvement devient,
Mo(@t)=—kr(t)— Av(t)
La projection de cette équation le long de 'axe du mouvement Ox s’écrit,
Mi(t)=—kax(t)— Nz (t)
et elle est remise en forme comme,
Pt)+2y3(t)+wiz(t)=0

Les variables d’état du systéme sont la position 7 (¢) et la quantité de mou-
vement P (t) du point matériel et la variable d’état extensive S (t) caracté-
risant le frottement dans le fluide homogene. La fonction d’état énergie du
systeme est la somme de 1’énergie cinétique du point matériel et de I’énergie
interne,

_ P

E(r@),P(t)S{#)=—57 +Ur(1),5()

L’énergie cinétique s’écrit explicitement comme,
P2 (t) 1

1
=-Mv?(t)==M3i?
sif — g MvT () =5 Mi%(t)

L’énergie interne est la somme de l’énergie potentielle élastique et d’une
partie caractérisant le frottement,

U (r (1),5 () = 5 b () + U (S (5) = 5 b (1) + U (S (1)

Ainsi, I’énergie devient,

1 1
E(x(t),&(t),8(1) =5 M (t) + 5 ka® () + U (S(#)
La solution du mouvement oscillatoire en régime d’amortissement faible
s’écrit,
x(t) = Ae " cos (wot + ¢)
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et sa dérivée temporelle est,
p(t)=—Ae 7? (wo sin (wot + @) + v cos (wot + ¢))
En régime d’amortissement faible, c’est-a-dire v < wp, on en déduit que,
22 (t) = A%e™ 27 cos? (wot + @)
i% (t) = wd A%e™ 27 sin? (wot + ¢) = % A%e™ 2t sin? (wot + )
Ainsi, I’énergie du systéme devient,
E(S(t),) = % kA% (sin? (wot + 6) + cos? (wot +6) ) + U (5 (1)

et se réduit a,

E(S(t),t) = %kAZ’e*?VWU(S(t))

3) Etant donné que le systeme est isolé, la dérivée temporelle de I’énergie est

nulle,
du (S (¢))
ds (t)

Compte tenu de la fonction d’état T (t) conjuguée a la variable d’état S (¢),

E(S(t),t) = —~vkA%e™ 2 4 S(t)=0

_dU(S()
T ="450

on en conclut que la dérivée temporelle S (t) est strictement croissante,

e~ 24t

() >0

S (t) =k A



